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where C* is a 1 X n  matrix found so that the 
eigenvalues of the closed-loop system matrix 
of 

i = Ax + B*a (11) 
21 = C X  (12) 

B* = ( B ~  + ea? + e a 3  + . . . + B,B,) (13) 

where 

take on the preassigned eigenvalues. This is 
always possible to  do since (11) is  control- 
lable [2 ]  (the eigenvalues XI, X?, . . . , X, 
are painvise distinct and  the vector E =  2-1 

B+ has every  component corresponding to  
the  last row of each Jordan block of J non- 
zero) and  there is a single input only to  the 
system [3 1. 

Then  the eigenvalues of the closed-loop 
system  matrix  obtained by using (9) with 
(1) will take on the preassigned values since 

( A  + BC) 

= ( A  + PC*). (15) 

Consider now the case when hl, 
XI, . . . , X, are  not pairwise distinct. I t  will 
be shown that a linear feedback control 
system can always be found so that ( 5 )  is 
transformed into a system  with n distinct 
eigenvalues. This means (using the results 
just  obtained), that a linear feedback con- 
trol  system can then be applied so that  the 
eigenvalues of the closed loop system matrix 
take on n preassigned values, thus proving 
the necessity of the theorem. 

Transform the system ( 5 )  by: 

(16) 

where J 1  contains all the distinct eigenvalues 
of A and Jz  contains  all the remaining eigen- 
values of A.  

Now JZ contains s l a  Jordan blocks of 
J, some of which are repeated. Let  the  last 
Jordan block of JZ be of dimension r k .  Apply 
now a linear feedback control  system to (15): 

where k is an m X r  matrix, so that the rk 
eigenvalues of the last Jordan block of J2 are 
put equal to Y k  distinct  values  not  equal to 
the eigenvalues of J1. This is always possible 
to  do since the subsystem of (17) corre- 
sponding to  the last  Jordan block of J2 is 
controllable and has a minimal polynomial 
of degree Yk. 

Consider now the system  obtained on 
applying  such  a  control  system: 

(19) 
This  has r k  more distinct eigenvalues 

than (17). A new linear feedback control 
system  can now be applied to (19) by trans- 
forming the system (19) into  Jordan canon- 

ical form and  then repeating the process of 
(16)-(19) so that  the eigenvalues of the  last 
Jordan block of the new JS matrix obtained 
take on distinct eigenvalues not equal to 
the distinct eigenvalues of the system ma- 
trix of (19). This process is then repeated 
until the system  matrix finally obtained has 
7z distinct eigenvalues. 

The necessity of the theorem  has,  there- 
fore, been proved. 
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Remarks by W. AT. Wonhaml 
Davison's alternative proof of the  fact 

that controllability implies pole assignability 
is welcome. Wlether  or  not his proof (using 
the  Jordan form of A )  is really simpler is 
perhaps a matter of taste, since the  Jordan 
form is much more sophisticated than  the 
block triangular form used by Langenhop 
and  by me, and exhibits much more of the 
structure of A than  one really needs to  solve 
the problem. Of course, all these methods 
are useful in applications. 

W .  M. WONHAM 
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Comments "On Pole Assignment in 
Multi-Input Controllable Linear 
Systems" 

Abstract-A short and direct new proof 
is given to Wonham's theorem  that a time 
invariant multi-input linear dynamical sys- 
tem is controllable only if its poles c a n  
arbitrarily be  reassigned in a closed-loop 
system by means of a constant (state vari- 
able) feedback law. The construction pro- 
vided in the proof is directly applicable as an 
effective algorithm for this pole assignment. 

In  the above  paper,'  Wonham investi- 

P =  A x f B u  (1) 

be a constant  parameter linear dynamical 
system with x an n-dimensional state vector, 
u an m-dimensional input vector, and A and 
B n Xn and n X m  constant real matrices, re- 
spectively. The closed-loop system with 
u = Cx+n is given as 

gated the following problem. Let 
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trol. vol.  AC-12,  pp. 660-665. December 1967. 

. C . = ( A + B C ) x + B a  (2) 

where C is a constant m Xn feedback  matrix 
and 91 is a new input vector. 

Let L denote the collection of all sets of 
n complex numbers A =  { A', . , An) such 
that if X& and Im(X;)#O, then K i d ,  where 
X; is the complex conjugate of Xi.  

The theorem proved by \\'onham is the 
following. 

Theorem: The system (1) is controllable 
1) if and 2) only if for every licL there exists 
a real  matrix C such that (2) has A as  its 
set of poles (i.e., A is the  set of eigenvalues of 
A +3C). 

The proof of 1) given by Wonham is 
straightforward, but the proof of 2), on 
which the  actual construction of C hinges, is 
complicated,  depends on a certain canonical 
form of Langenhop* (see also Luenbergera), 
and is not  entirely constructive, 

The purpose of this correspondence is to 
exhibit a short direct proof of 2) which is 
considerably simpler than Wonham's, de- 
pends on no canonical form, and is  construc- 
tive. 

The  central construction of the present 
proof of 2) is contained in the following 
lemma. 

Lem7ne: Let (A,  B )  be a controllable  pair 
and let bl ,  - - - , b,,, be  the column vectors of 
B. Then for any i = l ,  . . . , m (bi#O) there 
exists a matrix Ci such that ( A  + X i ,  bi) is 
controllable. 

Proof: Recall that ( A ,  B )  is controllable 
if and only if the n Xnm matrix 

- 

K = [B,   AB,  . * . , An-'B] 
has rank n. Then, since ( A ,  3) is controllable 
(see,  e.g., Luenberges),  there exist  distinct 
columnsb+ * * , b;, of B @ < m )  withit=;, 
and integers 

P 
kil, * * . , k i p  2 1, 1 k;i = n, 

j-1 

such that  the  set of n vectors 

formsabasisforRn,andforeachj=il, - -,ip 
the vector A%bj is a linear combination of 
the preceding basis elements. From here on, 
for simplicity of notation,  the  subscript i 
will be dropped, and it will be assumed,  with- 
out loss of generality, that il= I, &=2, * . - , 
i p = p  (this  can  always be accomplished by 
interchanging the columns of B which is 
equivalent to interchanging the indices of the 
components of u) .  Let Q be  the n X n  (non- 
singular)  matrix of vectors of V, 
Q = [bl,  A b l ,  . . . , .Akl-'bl, . . . ~ 

and define the mXn matrix C as 
c = SF',  (3) 

where S is an m X n  matrix with columns st, 
2 = 1 ,  - - , n, defined as 

s t .  = ei+l f o r j  = 1, . . . , p - 1, 
where 
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the subspace along b, and 
{ A ( @ )   = @ + A C d + - . - + A - Y R .  

Then  for every nonzero b E @ ,  there exists C 
such that 

( A   + B C I { b ] }  = ( A  IB1. 
1%’. M. WOKHAM 

Office of Control Theory  and Application 
NAS4 Electronics Research Center 

Cambridge, Mass. 02139 

i 
tj=Ckr 

IC 1 

and ej+lis the  (j+l)thcolumn of the m x m  
unit  matrix, and SI = O  otherwise. 

I t  will now be shown that C as defined 
above actually satisfies the conditions of the 
lemma. Since CQ=S, it is readily seen that 

CAki-lbi = ej+1 for j = 1, . . . , p - 1 

and 
CA’bj = 0 

whereOsrSkj-2  for j=l ,  - , p-1, and 
O<r5kpA-l for j=p.  

Let A =A+BC and let 0 be the ‘con- 
trollability matrix” of (A +BC, bl )  given as 

0 = [bl,  Abl, * . . , An-’b1]. 

To see that 0 has  rank n, note  that  the vec- 
tors Jib,, j =0, * . . , n-1 are given as 

bl = bl 

Ab1 = ( A  + BC)bl = Ab1 
A’bl = ( A   + B C ) A b l  = A2bl 

. . . . . . . . . . . . . .  
Akrlbl = Akrlbl 

A^klbl  = ( A  + BC).4k1-1bl 
= Be, + Aklbl = bz + . . 

Ak~+’bl = ( A  + BC)(bz + . . * ) 
= A b ? +  * 

. . . . . . . . . . . . . . . .  
An-lbt = ( A  + BC)  (Ab-*bp + . . * ) 

= Akp-lbp + . . . 
where, in the above expressions, * - de- 
notes linear combinations of the preceding 
\-ectors. Clearly, these  vectors are linearly 
independent by  the independence of the 
vectors of V. Q.E.D. 

Proof of 2): Since ( A ,  B)  is  controllable, 
construct, according to  the above  lemma, a 
matrix, say, C1, such that (A+BC,, bl) is 
controllable. Since the theorem  is ne11  knoX5-n 
for systems with scalar  control (see, e.g., 
Brockett’) one can readily find an n-vector b 
such that A+BC1+blbT has A as  its set of 
eigenvalues. The desired feedback matrix C 
is then given by Cl+C where C is the wz x s  
which is bT. 
matrix which is zero except  for the first ro\\T 

Q.E.D. 

The proof of 2)  is now immediate. 

kIICH.4EL HEYMANN~ 
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Author’s Reply6 
Heymann’s alternative proof of the  fact 

that controllability implies pole assignabil- 
ity is nice and neat .  A simple and useful gen- 
eralization of Heymann’s lemma is the fol- 
lowing. I\’rite for the range of B, ( b )  for 
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Adaptive  Tracking of Maneuvering 
Targets 

Abstract-” means is suggested  heuris- 
tically by which Kalman sequential  estima- 
tion can  be  made adaptive to  target  maneu- 
vers without the sacrifice of tracking ac- 
curacy in the nonmaneuvering portions of a 
trajectory. The adaptation requires back- 
sliding in the gain schedule  and reprocessing 
of the most recent several measurements. 
These  steps  are initiated by a maneuver 
detector which senses a buildup of bias in 
the filter’s estimates. 

INTRODUCTION 
The discrete Kalman filter has found 

successful application in the processing of 
radar  data for trajectory  and  orbit determi- 
nation, and in other tracking problems where 
the object being tracked  (the  target) is not 
subjected to  what might be termed unknown 
deterministic forcing, Le., maneuvers. 

This correspondence suggests heuristi- 
cally a means by which Kalman  sequential 
estimation can be made adaptive  to  target 
maneuvers without the sacrifice of tracking 
accuracy in the nonmaneuvering portions of 
the trajectory. The  adaptation  has two as- 
pects,  one of regression, or backsliding in the 
gain schedule, the  other of reprocessing the 
most recent  several measurements. These 
measures are initiated by a maneuver de- 
tector which senses a buildup of bias in the 
filter’s estimates. 

M A X E W E R S  

From the point of view of a target pilot, 
maneuvers  result from the application of 
known deterministic forcing functions. From 
the point of view of a radar-equipped ob- 
server, maneuver motion may  be observed, 
but  the explicit forces causing the maneuver 
and  the precise time of their  application  can 
never be known. To  the observer, then, 
these forces are unknown, but nonetheless 
retain their  deterministic  character.  At- 
tempts  have been made to embed the effects 
of maneuvers in the covariance matrix of the 
random  excitation provided for in the filter 
structure. Such embedding has obvious 
drawbacks; it assumes that maneuvers are 
random in nature,  and  it seriously degrades 
estimation  accurzcy by overweighting raw 
data for nonmaneuvering trajectories. 
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FILTER ADAPTATION 
Estimation  bias of the  type caused by a 

maneuvering target  may  be observed build- 
ing up in the prediction difference term, en- 
closed in brackets in the filtering equation: 

?klk = @ f t - l l n - ~  + Gk[zk - ;+-I]. (1) 
I%’hen the vector z k  is measured with a zero- 
mean error sequence of known covariance 
R, the nonmaneuvering, nonrandomly ex- 
cited prediction difference should have a 
zero mean and a covariance 

PZklk-1 = H@P&1+l@’HT + i? (2) 

where H is the measurement  matrix, % the 
transition  matrix, and 

Pk-llk-1 = E I ( X k - 1  - ?k-l[k- l )  

. (Xk- l  - ? k - l l L l ) T l  
(3) 

the theoretical  estimation  error  covariance 
for the (k -1)th sample. Reasonable tests for 
bias  can  be performed by comparing, at 
every sample and for strings of consecutive 
samples, the magnitudes and signs of the ele- 
ments of the z k - & ~ l  difference vector 
relative to  the  appropriate variance terms 
on the diagonal of the covariance  matrix 
Pzklk-1. For example, should two or more 
consecutive differences be of the  same sign 
and outside the limits of a 3u gate, a very 
strong  indication exists that  the  target is 
undergoing a maneuver. To  recover from the 
bias introduced by such a maneuver, it  is 
obvious that  the raw observation data  must 
be weighted more heavily than would be  the 
case if the subsequent filter gains were taken 
from the  routine gain  schedule This sug- 
gests a backsliding in the schedule and a re- 
processi.rrg  of the most  recent several mea- 
surements, the mechanics of which are now 
described. Assume that  the kth measurement 
has  just been taken. Assume also that  the 
bias detector bases its maneuver decisions 
on the most recent n measurements, includ- 
ing the  kth. If upon processing the Rth mea- 
surement  the  bias  detector concludes that a 
maneuver is in progress, the filter is to back- 
step  to  the  (k-n+l)th  time point and re- 
initialize its  state vector to  the value 

&-n+lll;--n = G L n 1 k - n .  (4) 
The filter is then to  reprocess the measure- 
ment zk-,,+l (presumed to have been stored 
for this  eventuality) using the filtering equa- 
tion 

f k - n + l l k - w 1  = xt-n+ll+-n (3 

where the integer N indicates a certain point 
in the routine gain schedule. The value of N 
is generally to  be  set  quite low so that  the 
relatively high gains of the  early  part of the 
schedule are brought t o  bear  upon the most 
recent  measurements,  those thought to  be 
taken  during a target maneuver. The re- 
processing continues as outlined above, 
using G,v+~, GK+z, etc.,  until  the n most re- 
cent measurements are reprocessed, where- 
upon normal filtering and maneuver detec- 
tion processes are resumed. The filter gain, 
however, is not restored to  its premaneuver 
point in the schedule, but proceeds sequenti- 
ally from the backstep  point as indicated 
above. 

+ Gx[Zk--n+l- 77k-n+l!k-n] 


